Capitulo 9. REDUCCION DE TAMANO. MOLINOS

9.1. Introduccién

Las operaciones unitarias que reducen el tamafio de particulas son procesos
industriales muy importantes, en efecto se aplican para: rocas, carb6n, cemento,
plasticos, granos, etc. Los equipos que se usan para disminuir el tamafio de
particulas se denominan en general molinos. Se puede procesar desde pocos
kilogramos por hora (operaciones de baja escala) hasta cientos de toneladas por
hora (e.g. en la industria minera). En muchas ocasiones el material debe molerse
desde aglomerados de gran tamafio hasta polvo muy fino. Probablemente un solo
molino no sea capaz de lograr la reduccidon deseada, entonces serd necesaria una
secuencia de equipos para lograr el objetivo.

Los equipos que muelen grandes aglomerados se denominan “crushers” en
inglés, mientras que los que muelen particulas de pequefios tamafios se denominan
“mills”, por supuesto que existe todo un rango de tamafios donde se superpone la
aplicabilidad de estos equipos. En castellano no tenemos tal diferenciacion, y
habitualmente los equipos son denominados “molinos”.

En muchas industrias de alimentos, la reduccion de tamafo puede ayudar a
procesos de extraccion de alimentos, a disminuir los tiempos de coccién, etc. En la
industria de alimentos los equipos para la molienda suelen recibir diferentes nombres
segun la aplicacion, por ejemplo molienda de granos, picado de carne, cubeteado de
tubérculos, rayadores, etc.

Los “crushers” tienen un costo de capital y de consumo de energia por TPH que
nos es elevado. Sin embargo, estos equipos requieren de una gran robustez
mecanica ya que se utilizan grandes tensiones para romper aglomerados de gran
tamafo (por ejemplo, rocas).

Los “mills” consumen mucha energia y sufren desgaste mecanico importante por
la erosion que causan las particulas mas pequefias.

Los molinos, al igual que los granuladores, tienen una gran semejanza a los
reactores quimicos de los procesos gas-liquido, es decir, la distribucion de tamafio
de particulas de la corriente de salida es completamente diferente a la de entrada
(en un reactor, la composicion de la mezcla que abandona al equipo posee una

composicion diferente a la de entrada).
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9.2. Equipos para molienda

En la Tabla 9.1 se presenta una clasificacion de equipos de molienda en funcion
del tamafio del material requerido. No se incluyen en ese cuadro los equipos de
corte en tamafio especifico como serian las picadoras, rayadores o cubeteadoras.

En la Figura 9.1 se presenta un molino de rodillo de gruesos (crusher). En este
tipo de molinos dos cilindros de acero rotan en sentido contrario de manera que las
particulas son atrapadas y sometidas a fuerzas de compresion que causan la
reduccion de tamafo. Puede definirse la distancia entre ambos rodillos, manipulando
el resorte de alivio del equipo. La superficie de los rodillos puede ser lisa, corrugada
o0 puede tener dientes (disco dentado). Los molinos dentados no pueden moler
s6lidos muy duros. Los molinos de gruesos a rodillos no poseen un tiempo de
residencia caracteristico, se denominan equipos de un solo paso.

Tabla 9.1. Tipos de molinos de acuerdo al tamafio del producto final.

Rango de reduccién de Nombre genérico del Tipo de equipo
tamafio equipo
. : Molinos de gruesos: De rodillos
Grueso e intermedio “ .
Crushers
0 fi Molinos de finos: “Mills o~ * D€ mavrtillo
Intermedio y fino . » : - Disco de atricion
Grinders )
= De rodillos
) ] Molinos de ultrafinos: D il
Fino y ultrafino - De martillo

“Ultrafine grinders” = De bolas
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Figura 9.1. Molinos de gruesos a rodillos. Fuente: Ortega-Rivas, 2005.
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La Figura 9.2 presenta un molino de martillo, el cual contiene un rotor de alta
velocidad que gira dentro de una carcasa cilindrica. El rotor posee un collar con un
dado nimero de martillos en la periferia. La ruptura se da principalmente por fuerzas
de impacto, algo de atricion es factible. Si se reemplazan los matrtillos por cuchillas,
se puede moler material fibroso, y alin pegajoso.

Figura 9.2. Molinos de martillos. Fuente: Ortega-Rivas, 2005.

@) Faad (b} Fead

i Rotating disk w

Retating
disk
\-.
e
b | (= =
C 3

— [ == =]

Fixed
N
disk H
~ N
FRotating

n

Product

Product

(<) Feed

)
)

| N

Product Product

Figura 9.3. Molinos de atricién de discos. a) molino de un disco, b) molino de dos

discos, c¢) molino tipo Buhr. Fuente: Ortega-Rivas, 2005.
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Los molinos de disco de atricion se muestran en la Figura 9.3. Se utilizan
fuerzas de corte para lograr la reduccion de tamafio, se utlizan para dar
principalmente particulas finas. Existen varios modelos, la Figura 9.3.a muestra a un
disco con canaletas que rota a alta velocidad enfrentado a un disco fijo. El espaciado
entre ambos discos puede regularse. En un molino de atricion de doble disco (Figura
9.3.b) existen dos discos que rotan en direcciones opuestas, lo que facilita un
intenso desgaste. Por dltimo el molino tipo Buhr (Figura 9.3.c) es el molino de disco
mas antiguo, muy usado para la molienda de harina, consiste en dos discos
montados en un eje vertical, el de arriba se encuentra fijo, mientras que el de abajo
rota.

Los molinos de tambor son usados en muchas industrias para lograr una
molienda fina. Basicamente poseen un tambor cilindrico horizontal que rota a baja
velocidad, parcialmente lleno de bolas o de barras (Figura 9.4.a). La carcasa
cilindrica es usualmente de acero recubierta de una lamina de acero al carbono,
porcelana o goma. Las bolas son de acero o de piedra. Tanto el material a moler
como las bolas o barras del equipo son levantadas en las paredes del tambor
(debido a la rotacion), las que caen nuevamente en el lecho. La rotacion y el impacto
del material al caer favorecen la molienda. Se pueden poner baffles en el tambor,
dividiendo el equipo en compartimientos donde se cargan bolas de diferentes
tamafos (Figura 9.4.b). Esta disposicion permite entregar mas energia en las zonas
donde hay particulas de mayor tamafio. El tambor conico (Figura 9.4.c) utiliza la
segregacion del material de una manera eficiente. Al girar el tambor las bolas mas
grandes se mueven hacia el punto de mayor didametro (donde ingresan las particulas
a moler de mayor tamafio), mientras que las mas pequefias se trasladan hacia la
salida del equipo.

La Tabla 9.2 resume las aplicaciones de diferentes molinos en la industria de
alimentos.
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Figura 9.4. Molinos de tambor. a) de flujo rebasante , b) molino compartimentado,
¢) molino coénico. Fuente: Ortega-Rivas, 2005.

Tabla 9.2. Aplicaciones de molinos.

Molinos de
gruesos a
rodillos

Molinos de Molinos Molinos de
martillo de atricion tambor

Tamafo de molienda
Gruesos o
Intermedios [
Finos/ultrafinos

Aplicaciones
Chocolate [
Cacao
Maiz (himedo)
Frutas secas
Vegetales secos
Granos o
Pimienta
Sal
Especies
Azucar

9.3. Consumo de energia

Se reconoce la existencia de dos etapas en la rotura tanto de materiales muy
duros como fragiles:
1) fractura a lo largo de fisuras existentes en el material, y

2) formacion de nuevas fisuras con posterior fractura.
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También se conoce que s6lo un pequefio porcentaje de la energia suministrada al
equipo es usada para la operacion de rotura. Se han reportado eficiencias menores al
2%, lo cual indica que el proceso es extremadamente ineficiente. Gran parte de la
energia suministrada se libera como calor, lo cual debe considerarse especialmente si
se procesan alimentos.

Estudios tedricos indican que la energia suministrada por unidad de masa procesada
para producir un pequefio cambio en tamafio puede expresarse como una funcién del
tipo ley de la potencia con respecto al tamafio de las particulas:

g __K 9.)
dx X"
donde K es una constante del material, y x es el tamafio de la particula (diAmetro). La
expresion (9.1) se conoce como la ley general de la ruptura, y es una interpretacion
general de varias leyes presentadas por diferentes autores.
Rittinger en 1867 consider6 que cuando se muele material, la energia
requerida deberia guardar una relacién con la nueva superficie generada durante la
molienda. A continuacion se presenta la deduccion.

Masa inicial: my =Ny pp Ky xf (9.2)
Masa final: my =Ny pp ky x% (9.3)

donde ky es un factor de forma de volumen (por ejemplo si la particula es esférica,
k,=m/6), N1 y N, representan el nUmero de particulas antes y después de la molienda
respectivamente.

Como las masas iniciales y finales del material a moler y molido deben ser

iguales, puede deducirse la siguiente relacion entre N; y N, :
N, =N; —= (9.4)

La nueva superficie generada durante la ruptura puede calcularse a partir de

las superficies inicial y final:
Area inicial: S;=N; k¢ X3 (9.5)

Area final: S, =Nj kg X3 (9.6)
donde ks es un factor de forma de superficie (por ejemplo si la particula es esférica,

ks=m).

Area generada: S =N, kg X3 —N; kg x2 (9.7)
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Reemplazando la ecuacion (9.4) en (9.7) resulta:

Energia consumida: F- M ks(l—lj (9.8)
Kvp, X2 X1
Energia consumida por E:E:ks(l—ljzc [1_1J
unidad de masa molida: m; Ky pp \ X2 X1 Xo  Xq (9.9)
RITTINGER

Por esta razén en la Ley general de ruptura, la expresion de Rittinger puede
expresarse como (uso de una potencia de n=2 en la ecuacién 9.1):
de. K

RITTINGER — = 9.10)
dx X2

Cuando la poblacién no es monodispersa, en la expresién de Rittinger deberia
utilizarse los diametros medios en superficie (Xns)-

En la practica se requiere una energia mucho mayor a la requerida para crear una
nueva superficie, por esta razon la ecuacién de Rittinger es una buena aproximacion
cuando se genera una alta superficie, es decir cuando se realiza una molienda muy

fina del material.

Kick en 1885 propuso que la energia requerida para moler un material debia ser
proporcional a la reduccion de tamafio, respecto al inicial:

Tamarfio inicial: X1 (9.11)

Tamafio final: X9 = X1 —AX (9.12)

En otras palabras, la energia es proporcional a:

ax
X

AE o (9.13)

Aplicando el limite para AX tendiendo a 0, conduce a la ecuacién de Kick (potencia 1
en la Ley general de rotura):
dE K

KICK — = (9.14)
dx X
Integrando la ecuacion (9.14) resulta:
KICK E=K |n(x1] (9.15)
X2
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La ecuacion indica que deberia usarse igual energia para moler una particula
de 10 um a 1 um, que una roca de 1 m a bloques de 10 cm. Obviamente esto no es
posible, la ecuacion de Kick es razonable cuando se procesan materiales gruesos.

La ley mas usada es la Ley de Bond (1952), la cual se expresa como sigue:

BOND E:Wl[jx%—jx%] (9.16)

En esta ecuacion x; y X, representan el tamafio del tamiz (expresado en
micrones) por el cual el 80% del material (de la alimentacion y del producto) pasa. W,
se denomina indice de trabajo de Bond (“Bond work index”). Este parametro
representa la energia requerida, por unidad de masa, para moler un material de

tamano infinito a un tamafno de 100 micrones.

En términos de la ley general de la ruptura, la ecuacion de Bond puede
expresarse como:
de. K

o (9.17)

BOND

La ecuacion de Bond permite representar la molienda razonablemente para
materiales gruesos y finos.

Las ecuaciones presentadas permiten caracterizar la molienda de manera
global, y son herramientas Utiles para una primera caracterizacion del proceso de
ruptura. De cualquier manera, si se desea conocer la PSD del producto de la
molienda, nuevamente el balance de poblacién es la Unica herramienta que puede

proveer tal informacion.

Ejemplo

Para moler particulas de 25 mm se requieren 20 KJ/Kg. Si la constante de la

ecuacion de Kick es 15.7 KJ/Kg. Estime el tamafio de las particulas molidas.
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Solucién

E=K |n[ﬁ]
X2

E= 20 KJ/Kg
x1= 25 mm
K= 15.7 KJ/Kg
X
X 2 = 71
exp E
K
x2= 7 mm

9.4. Cinética de Ruptura

El proceso de molienda, tal como lo muestra la Figura 9.5, puede de causar que

una particula de un dado tamafio genere mas de dos fragmentos.

o—°
Figura 9.5. Proceso de ruptura.

Los términos de nacimiento y muerte de una particula de tamafio v pueden

expresarse comao:

Nacimiento de particulas de tamafio v:

‘ - v.: Ppirth /rupt (V) = Ofb(U’V) S(u) n(u)du (9.18)
u \"

donde S(u) es la constante de velocidad de ruptura (s™). b(u,v) representa la funcién
de distribucién de ruptura, indicando la fraccién de particulas de tamafio v que se
generan por ruptura de particulas de tamafio u (#,/#.L%). S6lo las particulas de tamafio
mayores a v pueden dar por ruptura fragmentos de tamafo v, esta es la razén por la
cual la integral se extiende desde v hasta las particulas de mayor tamafio existentes

en la grilla.
Muerte de particulas de tamafio v:

— > Qe
®—%

Ndeath/rupt (V) = S(v) n(v) (9.19)
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9.4.1. Funcion de distribucién de ruptura. Propiedades.
9.4.1.1. Conservacioén del volumen

La funcién de distribucién de ruptura [b(u,v)], si la masa del sistema no se modifica

en el proceso (i.e. hay sélo ruptura), debe verificar la siguiente ecuacion:

u= Tv b(u,v) dv (9.20)
0

donde u y v representan el volumen de dos particulas cualesquiera del sistema.
La ecuacion (9.20) indica que la suma de los volumenes generados por fractura de
la particula u debe ser igual al volumen original de tal particula (conservacion de la

masa).

9.4.1.2. Numero promedio de fragmentos generados

El nimero de fragmentos que se genera se calcula como sigue:

Ny = [ b(u,v) dv (9.21)

O —C

donde Nu (#,) es el numero de fragmentos generados a partir de una particula de

tamafio u.

9.5. Balance de Poblaciéon Macroscoépico

Si aplicamos la ecuacion (8.18) a un granulador discontinuo perfectamente
mezclado, donde solo se lleven a cabo procesos de ruptura, puede obtenerse la
siguiente ecuacion:

dm

- th +Npirth j ~Ndeath j = 0 (8.39)

Teniendo en cuenta la definicion de momento (ecuacion 8.1) y las velocidades
de nacimiento y muerte (9.18) y (9.19) para ruptura, la ecuacion (8.39) puede

reescribirse como:

- T + ijdvofb(u,v) S(u) n(u)du — Ofvi S(v)n(v) dv =0 (9.22)
0 Y 0

Si calculamos el momento 1 (o V) debemos hacer j=1 en la ecuacion (9.22),

por lo tanto:
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dn:1 + Ofov dvjb(u V) S(u) n(u)du - fv S(v)n(v)dv =0 (9.23)

d 0 \Y
Tal como hicimos para el caso de aglomeracién podemos hacer un cambio de
extremos de las integrales dobles de la ecuacion (9.23). Teniendo en cuenta que

O<v<ow y v<u<co; pueden ser reescritos como 0<u<w y O<v<u. La ecuacion (9.23)

puede entonces expresarse como:

o0 u o0
- % + [S(u) n(u) dufb(u,v) v dv — [v S(v)n(v) dv = 0 (9.24)
0 0 0
Reemplazando la ecuacion (9.20) en la ecuacion (9.24):
dml
it + ju S(u) n(u) du — jv S(v)n(v)dv =0 (9.25)
0

Por lo tanto se verifica:

Molino discontinuo, amy _ 0 (9.26)
perfectamente mezclado, dt

ruptura pura

Si calculamos el momento 0 (o Nt) debemos hacer j=0 en la ecuacion (9.22),

por lo tanto:

d(r;o +Tdvjb(u V) S(u) n(u)du - j S(v)n(v)dv=0 (9.27)

0 v 0
El momento 0 no puede calcularse de modo genérico si no se definen las
funcionalidades de la constante de velocidad de ruptura y de la funcién de distribucion
de ruptura. Haremos dos suposiciones:
S(v)=constante=S,
= Se producen rupturas binarias, i.e. una particula se fractura para
dar sélo dos fragmentos (ver Figura 9.6).
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Figura 9.6. Ruptura binaria.

La funcién de distribucion de ruptura es la funcién que tiene en cuenta si la

ruptura es binaria o multiple. Para el caso de ruptura binaria, deber verificarse que:

Muw=§ (9.28)

La ecuacion (9.28) indica que se producen 2 particulas de igual volumen por

cada particula u. Es importante resaltar que esta definicion satisface ademas la
ecuacion (9.20) y se verifica ruptura binaria por evaluacion de la ecuacion (9.21), es

decir:

u u u 2
u=[vb(uv)dv= jvg dv =gjv dv =gu—=u (9.29)
0 o Uu Ug u?2

c

= [ b(u,v) dv _% =2 (9.30)

o

Cambiando los extremos de integracién de la ecuacioén (9.26):

d?O +S, f n(u)du jwlv Soj n(v)dv =0
dmo 2
So [ n(u)du —-Sp [ n(v)dv=0
dt+of() (uj of() 9.31)
dglo +280j n(u)du —Soj n(v) dv =0
De la ecuacion 9.31 resulta:
M dmy _ ¢
..... — =909 Mg (932)

Molino discontinuo, perfectamente
mezclado, ruptura binaria pura,
constante de velocidad de ruptura cte.
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Las ecuaciones de momento pueden facilmente extenderse a molinos con
entradas y salidas, o aplicarse a otros sistemas de interés.

Ejemplo
Un cultivo batch se inicia con un inéculo de 2 10° bacterias. El crecimiento

exponencial cumple con el balance de poblaciéon descripto por la ecuacién 9.29.
Estime el numero de bacterias después de 30 minutos de operacién, teniendo en

cuenta que pma= 0.1 min™.

Solucion

dx _ .

—— = UmaxX Xo= 2.00E+05 bacterias

dt t= 30 min

In X Ut pmax= 1.00E-01 min-1
Xo max X= 4.02E+06 bacterias

X = Xo exP(imaxt)

9.6. Balance de Poblacion Microscoépico

9.6.1. En nGmero

El balance de poblacidon para un molino perfectamente mezclado que opera de

manera discontinua es:

- %‘; + <)fb(u,v) S(u) n(u)du - S(v)n(v) =0 (9.33)

El balance discretizado puede obtenerse integrando la ecuacion (9.33) entre

dos volumenes de particulas consecutivos.

Vi+18n Vigr  © Vigl

— | —dv+ [dv [b(uv)S(u)n(u)du- [S(v)n(v)dv=0 (9.34)
Vi at Vi \" Vi

Aplicando los mismos conceptos vistos para la aglomeracion (los

alumnos interesados en la deduccion pueden consultar el libro publicado por

Ramkrishna; 2000) el balance de manera discreta resulta:

..... dn* M # % *
Molino discontinuo, perfectamente _7dl + 2 Sjb"(xj,xj)nj -Sjnj =0
mezclado. J=i+1

(9.35)
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donde b” tiene unidades de (#/#).

La ecuacion (9.35) como en el caso de aglomeracion ha sido obtenida
asumiendo que las funciones continuas de la ecuacion (9.33) pueden ser expresadas
como variables discontinuas, de manera que al trabajar con la ecuacion (9.35) con
grillas fijas y deltas de tiempos grandes se puede incurrir en errores del calculo de la
masa total del sistema (la cual no debe variar). El uso de técnicas mas sofisticadas
gue aseguren la preservacion de los momentos fundamentales ha sido discutido, entre
otros, por Kumar y Ramkrishna (1996).

Si extendemos el balance a un molino donde existan corrientes de entrada y

salida, la ecuacion (9.35) se puede expresar como:

M * N - *

. . '”” —ﬂ+ > SJ b#(xi,xj)nj—Si n; +%niin—Q°“tni =0
Molino continuo en estado no dt j=itl vV o \ (9.36)
estacionario, perfectamente ’
mezclado. M . . . .

—dﬁ-‘r Z S] b#(xi,xj)nj —Si n; +ini’in—7l n; =0
d j=i+1 Tin Tout
(9.37)

Para molinos suelen encontrarse muchos trabajos donde se expresa el PBE en
funcion de masa en lugar de nimero, por esta razén presentaremos el PBE por

ruptura pura en términos de masa.
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9.6.2. En masa

Dada la ecuacién 9.37,

:k M * * * *
—%+ > Sj b#(Xi,Xj) nj _Si N; +ini7in —71 ny = 0 (937)
j=i+1 Tin Tout
y la definicién de masa de la clase i:
mi =N pp Xi (9.38)

* . .
donde m; y x; son la masa y el volumen de la clase i, respectivamente.

Reemplazando la expresion (9.38) en la (9.37), y teniendo en cuenta que en una

grilla fija los tamafios x; no varian con el tiempo:

*

* M m; * m-*. *
S 1AM S sbt ) s M, T M LM
pp Xi dt o Pp Xj Pp Xi  Tin Pp Xi  Tout Pp Xi
(9.39)
Multiplicando a ambos términos por p, X;, se obtiene:
:k M B * * * *
- dml + X Sj b#(xi,xj)ﬁmj —Si m; +imiin —imi =0 (940)
dt j=i+1 Xj Tin Tout

La funcién de distribucion de la ruptura (#/#;) puede ser reemplazada por una

funcion de ruptura en masa como sigue:

b* (xi,xj) & =b"(x;,X;) (9.41)
X.
J
Las unidades de la nueva funcién de ruptura son (g;/g;), por lo tanto el PBE final

en masa se reduce a:

M * * * * *
+ X Sj b (Xi,Xj) mj _Si m; +imi in —imi =0 (9.42)
j=i+1 Tin Tout

3 dmf

9.14



Ejemplo

Considere un molino de tambor para moler cacao, el equipo permanece en estado

estacionario 'y con Tjy =Tout =10min. Se alimentan 1 kg/min de particulas

monodispersas del tamafio de la clase 6.

Datos adicionales
Clase 1 2 3 4 5 6

S 0 0.3 0.35 0.5 0.6 0.7

b(1,)) 0 1.0 0.4 0.25 0.2 0.12
b(2,)) 0 0 0.6 0.25 0.2 0.12
b(3,)) 0 0 0 0.5 0.2 0.14
b(4,)) 0 0 0 0.4 0.3
b(5,)) 0 0 0 0 0.32
b(6,)) 0 0 0 0 0 0

Solucion:

Antes del planteo de las ecuaciones para la resolucién del modelo se discutira
algunos aspectos vinculados al tiempo de residencia. El tiempo de residencia tal como

lo hemos descripto esta dado por la siguiente ecuacion:

13
; — (9.43)
Q |_~°/
t
Si se multiplica por la densidad de la particula en el numerador y denominador

de la ecuacion (9.39), resulta:

c =2 1. |9 (9.44)

Considerando que la composicidon de una mezcla de particulas puede definirse
por la masa fraccional y; de la corriente, se puede multiplicar y dividir el lado derecho

de la ecuacion (9.44) por y;:

Mry m
c=MT Yi _Mi

= 9.45
Teniendo en cuenta que en este ejemplo entra una poblacién monodispersa:
Tin Mjn = Mgjn (9.46)

El PBE para este caso puede expresarse como:
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M * . * * 1 * 1 *
> Sjb (Xi,X]) mj _Si m; +—miin——mi =0 (9.47)
j=i+l Tin Tout
Para las clases existentes podemos plantear diferentes balances:

Clase 1
S, b (12)my +S3 b (1,3)m3 +S, b (14)my + S b (15)mg + Sg b (1,6) mg
~Sym; +0.1my,, - 0.1m; =0
Clase 2
S3b’(2,3)m3 +S, b"(2,4)my +Sg b'(2,5)mg +Sg b'(2,6) mg
~Spmy +0.1my;, —0.1m; =0
Clase 3
S4b(3,4)my +Ss b (3,5)ms +Sg b (3,6)mg — Samz +0.1m3,, —0.1m3 =0
Clase 4
S5 b (4,5)mg +Sg b’ (4,6)mg — S,m, +0.1my, —0.1m, =0
Clase 5
Se b'(4,6)mg — Ssms +0.1mg,, —0.1mg =0
Clase 6

—Sgmg +0.1mg, —0.1mg =0

Reemplazando los datos dados en el problema, resulta:
Clase 1

(0.3)(1)m5 +(0.35) (0.4) m3 +(0.5) (0.25) my +(0.6) (0.2) mg + (0.7)(0.12) mg — 0.1m; =0

Clase 2
(0.35)(0.6)m3 +(0.5)(0.25)my +(0.6) (0.2) mg +(0.7)(0.12) mg — (0.3)m5 —0.1m5 =0
Clase 3
(0.5)(0.5)my +(0.6)(0.2) mg +(0.7)0.14) mg — (0.35)m3 —0.1m3 =0
Clase 4
(0.6)(0.4) mg +(0.7)(0.3)mg — (0.5)my —0.1m, =0
Clase 5
(0.7)0.32) mg — (0.6)mg —0.1mg =0
Clase 6
~(0.7)mg +(0.2)10)- 0.1mg = 0

9.16



Solucién clase 6
mg =1.25Kg
Solucién clase 5
ms = 0.4 Kg
Solucion clase 4
m, = 0.5975 Kg
Solucién clase 3
m3 = 0.710833333 Kg
Solucion clase 2
m5 = 0.94240625 Kg
Solucion clase 1

m; = 6.09926042 Kg

6
Se verifica que Y m; =10Kg, por lo tanto se preserva la masa total de la
1

poblacién en el molino, lo cual es razonable si esta operando en estado estacionario.
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