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Capítulo 9.  REDUCCIÓN DE TAMAÑO. MOLINOS 
 
 

 
9.1. Introducción 
 

Las operaciones unitarias que reducen el tamaño de partículas son procesos 

industriales muy importantes, en efecto se aplican para: rocas, carbón, cemento, 

plásticos, granos, etc. Los equipos que se usan para disminuir el tamaño de 

partículas se denominan en general molinos. Se puede procesar desde pocos 

kilogramos por hora (operaciones de baja escala) hasta cientos de toneladas por 

hora (e.g. en la industria minera). En muchas ocasiones el material debe molerse 

desde aglomerados de gran tamaño hasta polvo muy fino. Probablemente un solo 

molino no sea capaz de lograr la reducción deseada, entonces será necesaria una 

secuencia de equipos para lograr el objetivo.  

Los equipos que muelen grandes aglomerados se denominan “crushers” en 

inglés, mientras que los que muelen partículas de pequeños tamaños se denominan 

“mills”, por supuesto que existe todo un rango de tamaños donde se superpone la 

aplicabilidad de estos equipos. En castellano no tenemos tal diferenciación, y 

habitualmente los equipos son denominados “molinos”. 

En muchas industrias de alimentos, la reducción de tamaño puede ayudar a 

procesos de extracción de alimentos, a disminuir los tiempos de cocción, etc.  En la 

industria de alimentos los equipos para la molienda suelen recibir diferentes nombres 

según la aplicación, por ejemplo molienda de granos, picado de carne, cubeteado de 

tubérculos, rayadores, etc.  

Los “crushers” tienen un costo de capital y de consumo de energía  por TPH que 

nos es elevado. Sin embargo, estos equipos requieren de una gran robustez 

mecánica ya que se utilizan grandes tensiones para romper aglomerados de gran 

tamaño (por ejemplo, rocas). 

Los “mills” consumen mucha energía y sufren desgaste mecánico importante por 

la erosión que causan las partículas más pequeñas. 

Los molinos, al igual que los granuladores, tienen una gran semejanza a los 

reactores químicos de los procesos gas-líquido, es decir,  la distribución de tamaño 

de partículas de la corriente de  salida es completamente diferente a la de entrada 

(en un reactor, la composición de la mezcla que abandona al equipo posee una 

composición diferente a la de entrada). 
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9.2. Equipos para molienda 
 

En la Tabla 9.1 se presenta una clasificación de equipos de molienda en función 

del tamaño del material requerido. No se incluyen en ese cuadro los equipos de 

corte en tamaño específico como serían las picadoras, rayadores o cubeteadoras. 

 En la Figura 9.1 se presenta un molino de rodillo de gruesos (crusher). En este 

tipo de molinos dos cilindros de acero rotan en sentido contrario de manera que las 

partículas son atrapadas y sometidas a fuerzas de compresión que causan la 

reducción de tamaño. Puede definirse la distancia entre ambos rodillos, manipulando 

el resorte de alivio del equipo. La superficie de los rodillos puede ser lisa, corrugada 

o puede tener dientes (disco dentado). Los molinos dentados no pueden moler 

sólidos muy duros. Los molinos de gruesos a rodillos no poseen un tiempo de 

residencia característico, se denominan equipos de un solo paso. 

 

Tabla 9.1. Tipos de molinos de acuerdo al tamaño del producto final. 

Rango de reducción de 
tamaño 

Nombre genérico del 
equipo 

Tipo de equipo 

Grueso e intermedio Molinos de gruesos: 
“Crushers” 

De rodillos 
 

 
Intermedio y fino 
 

Molinos de finos: “Mills o 
Grinders” 

 De martillo 
 Disco de atrición 
 De  rodillos 

Fino y ultrafino 
Molinos de ultrafinos: 

“Ultrafine grinders” 
 De martillo 
 De bolas 

 

 

 
Figura 9.1. Molinos de gruesos a rodillos. Fuente: Ortega-Rivas, 2005. 
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La Figura 9.2 presenta un molino de martillo, el cual contiene un rotor de alta 

velocidad que gira dentro de una carcasa cilíndrica. El rotor posee un collar con un 

dado número de martillos en la periferia. La ruptura se da principalmente por fuerzas 

de impacto, algo de atrición es factible. Si se reemplazan los martillos por cuchillas, 

se puede moler material fibroso, y aún pegajoso. 

 

 
Figura 9.2. Molinos de martillos. Fuente: Ortega-Rivas, 2005. 

 
Figura 9.3. Molinos de atrición de discos. a) molino de un disco, b) molino de dos 

discos, c) molino tipo Buhr. Fuente: Ortega-Rivas, 2005. 
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 Los molinos de disco de atrición se muestran en la Figura 9.3. Se utilizan 

fuerzas de corte para lograr la reducción de tamaño, se utilizan para dar 

principalmente partículas finas. Existen varios modelos, la Figura 9.3.a  muestra a un 

disco con canaletas que rota a alta velocidad enfrentado a un disco fijo. El espaciado 

entre ambos discos puede regularse. En un molino de atrición de doble disco (Figura 

9.3.b) existen dos discos que rotan en direcciones opuestas, lo que facilita un 

intenso desgaste. Por último el molino tipo Buhr (Figura 9.3.c) es el molino de disco 

más antiguo, muy usado para la molienda de harina, consiste en dos discos 

montados en un eje vertical, el de arriba se encuentra fijo, mientras que el de abajo 

rota. 

 Los molinos de tambor son usados en muchas industrias para lograr una 

molienda fina. Básicamente poseen un tambor cilíndrico horizontal que rota a baja 

velocidad, parcialmente lleno de bolas o de barras (Figura 9.4.a). La carcasa 

cilíndrica es usualmente de acero recubierta de una lámina de acero al carbono, 

porcelana o goma. Las bolas son de acero o de piedra.  Tanto el material a  moler  

como las bolas o barras del equipo son levantadas en las paredes del tambor 

(debido a la rotación), las que caen nuevamente en el lecho. La rotación y el impacto 

del material al caer favorecen la molienda. Se pueden poner baffles en el tambor, 

dividiendo el equipo en compartimientos donde se cargan bolas de diferentes 

tamaños (Figura 9.4.b). Esta disposición permite entregar más energía en las zonas 

donde hay partículas de mayor tamaño. El tambor cónico (Figura 9.4.c) utiliza la 

segregación del material de una manera eficiente. Al girar el tambor las  bolas más 

grandes se mueven hacia el punto de mayor diámetro (donde ingresan las partículas 

a moler de mayor tamaño), mientras que las más pequeñas se trasladan hacia la 

salida del equipo. 

La Tabla 9.2 resume las aplicaciones de diferentes molinos en la industria de 

alimentos. 
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Figura 9.4. Molinos de tambor. a) de flujo rebasante , b) molino compartimentado, 

c) molino cónico. Fuente: Ortega-Rivas, 2005. 

 

Tabla 9.2. Aplicaciones de molinos. 

 
Molinos de 
gruesos a 

rodillos 

Molinos de 
martillo 

Molinos 
de atrición 

Molinos de 
tambor 

Tamaño de molienda     
Gruesos     
Intermedios     
Finos/ultrafinos     

Aplicaciones     
Chocolate     
Cacao     
Maíz (húmedo)     
Frutas secas     
Vegetales secos     
Granos     
Pimienta     
Sal     
Especies     
Azúcar     

 
 
9.3. Consumo de energía 

 
Se reconoce la existencia de dos etapas en la rotura tanto de materiales muy 

duros como frágiles: 

1) fractura a lo largo de fisuras existentes en el material, y 

2) formación de nuevas fisuras con posterior fractura. 
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También se conoce que sólo un pequeño porcentaje de la energía suministrada al 

equipo es usada para la operación de rotura. Se han reportado eficiencias menores al 

2%, lo cual indica que el proceso es extremadamente ineficiente. Gran parte de la 

energía suministrada se libera como calor, lo cual debe considerarse especialmente si 

se procesan alimentos.  

Estudios teóricos indican que la energía suministrada por unidad de masa procesada 

para producir un pequeño cambio en tamaño puede expresarse como una función del 

tipo ley de la potencia con respecto al tamaño de las partículas:  

nx
K

dx
dE

−=       (9.1) 

donde K es una constante del material, y x es el tamaño de la partícula (diámetro). La 

expresión (9.1) se conoce como la ley general de la ruptura, y es una interpretación 

general de varias leyes presentadas por diferentes autores. 

 Rittinger en 1867 consideró que cuando se muele material, la energía 

requerida debería guardar una relación con la nueva superficie generada durante la 

molienda. A continuación se presenta la deducción.  

Masa inicial:  3
1vp11 xkNm ρ=       (9.2) 

Masa final:  3
2vp22 xkNm ρ=       (9.3) 

donde kV es un factor de forma de volumen (por ejemplo si la partícula es esférica, 

kv=π/6), N1 y N2  representan el número de partículas antes y después de la molienda 

respectivamente. 

 Como las masas iniciales y finales del material a moler y molido deben ser 

iguales, puede  deducirse la siguiente relación entre N1 y N2 : 

3
2

3
1

12
x
xNN =       (9.4) 

 La nueva superficie generada durante la ruptura puede calcularse a partir de 

las superficies inicial y final: 

Área  inicial:  2
1s11 xkNS =       (9.5) 

Área  final:  2
2s22 xkNS =        (9.6) 

 

donde ks es un factor de forma de superficie (por ejemplo si la partícula es esférica, 

ks=π). 

Área  generada:  2
1s1

2
2s2 xkNxkNS −=     (9.7) 
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 Reemplazando la ecuación (9.4) en (9.7) resulta: 

Energía consumida:  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ρ 12
s

v

1
x
1

x
1k

k
m´E

p

    (9.8) 

Energía consumida por  

unidad de masa molida:            (9.9) 

RITTINGER  
 

Por esta razón en la Ley general de ruptura, la expresión de Rittinger puede 

expresarse como (uso de una potencia de n=2 en la ecuación 9.1):  

RITTINGER    2x
K

dx
dE

−=          9.10) 

Cuando la población no es monodispersa, en la expresión de Rittinger debería 

utilizarse los diámetros medios en superficie (xNS). 

En la práctica se requiere una energía mucho mayor a la requerida para crear una 

nueva superficie, por esta razón la ecuación de Rittinger es una buena aproximación 

cuando se genera una alta superficie, es decir cuando se realiza una molienda muy 

fina del material. 

 
Kick en 1885 propuso que  la energía requerida para moler un material debía ser 

proporcional a la reducción de tamaño, respecto al inicial: 

Tamaño  inicial:   1x       (9.11) 

Tamaño  final:  xxx 12 Δ−=       (9.12) 

 

En otras palabras, la energía es proporcional a:  

x
xE Δ

∝Δ       (9.13) 

Aplicando el límite para xΔ  tendiendo a 0, conduce a la ecuación de Kick (potencia 1 

en la Ley general de rotura): 

KICK     
x
K

dx
dE

−=      (9.14) 

Integrando la ecuación (9.14) resulta: 

KICK    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1
x
xlnKE      (9.15) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−==

ρ 12
R

12v

s

1 x
1

x
1C
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1
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1
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m
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La ecuación indica que debería usarse igual energía para moler una partícula 

de 10 μm a 1 μm, que una roca de 1 m a bloques de 10 cm. Obviamente esto no es 

posible, la ecuación de Kick es razonable cuando se procesan materiales gruesos. 

La ley más usada es la Ley de Bond (1952), la cual se expresa como sigue: 

 

BOND    ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

12
I x

10
x

10WE     (9.16) 

 En esta ecuación x1 y x2 representan el tamaño del tamiz (expresado en 

micrones) por el cual el 80% del material (de la alimentación y del producto) pasa. WI 

se denomina índice de trabajo de Bond (“Bond work index”). Este parámetro 

representa la energía requerida, por unidad de masa, para moler un material de 

tamaño infinito a un tamaño de 100 micrones.  

 

 En términos de la ley general de la ruptura, la ecuación de Bond puede 

expresarse como: 

BOND     5.1x
K

dx
dE

−=      (9.17) 

 

La ecuación de Bond permite representar la molienda razonablemente para 

materiales gruesos y finos. 

Las ecuaciones presentadas permiten caracterizar la molienda de manera 

global, y son herramientas útiles para una primera caracterización del proceso de 

ruptura. De cualquier manera, si se desea conocer la PSD del producto de la 

molienda, nuevamente el balance de población es la única herramienta que puede 

proveer tal información. 

 
Ejemplo 
 

Para moler partículas de 25 mm se requieren 20 KJ/Kg. Si la constante de la 

ecuación de Kick es 15.7 KJ/Kg. Estime el tamaño de las partículas molidas. 
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Solución 

E= 20 KJ/Kg
x1= 25 mm
K= 15.7 KJ/Kg

x2= 7 mm

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1
x
xlnKE

⎟
⎠
⎞

⎜
⎝
⎛

=

K
Eexp

x
x 1

2

 
 

9.4. Cinética de Ruptura 
 

El proceso de molienda, tal como lo muestra la Figura 9.5, puede de causar que 

una partícula de un dado tamaño genere más de dos fragmentos. 

 
 
 

 
 

Figura 9.5. Proceso de ruptura. 

 
Los términos de nacimiento y muerte de una partícula de tamaño v pueden 

expresarse como: 

 

Nacimiento de partículas de tamaño v: 

du)u(n)u(S)v,u(b)v(n
v

rupt/birth ∫=
∞

&    (9.18) 

 

donde S(u) es la constante de velocidad de ruptura (s-1). b(u,v) representa la función 

de distribución de ruptura, indicando la fracción de partículas de tamaño v que se 

generan por ruptura de partículas de tamaño u (#v/#uL3). Sólo las partículas de tamaño 

mayores a v pueden dar por ruptura fragmentos de tamaño v, esta es la razón por la 

cual la integral se extiende desde v hasta las partículas de mayor tamaño existentes 

en la grilla. 

 

Muerte de partículas de tamaño v: 

 

)v(n )v(S)v(n rupt/death =&    (9.19) 

u 
v 

v 



 9.9

 

9.4.1. Función de distribución de ruptura. Propiedades. 
 
9.4.1.1. Conservación del volumen 
 

La función de distribución de ruptura [b(u,v)], si la masa del sistema no se modifica 

en el proceso (i.e. hay sólo ruptura), debe verificar la siguiente ecuación: 

 

∫=
u

0
dv)v,u(bvu      (9.20) 

donde u y v representan el volumen de dos partículas cualesquiera del sistema. 

La ecuación (9.20) indica que la suma de los volúmenes generados por fractura de 

la partícula u debe ser igual al volumen original de tal partícula (conservación de la 

masa).  

 

9.4.1.2. Número promedio de fragmentos generados 
 

El número de fragmentos que se genera se calcula como sigue: 

 

∫=
u

0
u dv)v,u(bN      (9.21) 

donde Nu (#u) es el número de fragmentos generados a partir de una partícula de 

tamaño u.  

 
9.5. Balance  de Población Macroscópico 

 
Si aplicamos la ecuación (8.18) a un granulador discontinuo perfectamente 

mezclado, donde sólo se lleven a cabo procesos de ruptura, puede obtenerse la 

siguiente ecuación: 

0nn
dt

dm
jdeathjbirth

j =−+− &&     (8.39) 

 
Teniendo en cuenta la definición de momento (ecuación 8.1) y las velocidades 

de nacimiento y muerte (9.18) y (9.19) para ruptura, la ecuación (8.39) puede 

reescribirse como: 
 

0dv)v(n )v(Svdu)u(n)u(S)v,u(bdvv
dt

dm

0

j

v0

jj =∫−∫∫+−
∞∞∞

  (9.22) 

 
Si calculamos el momento 1 (o VT) debemos hacer j=1 en la ecuación (9.22), 

por lo tanto: 
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0dv)v(n )v(Svdu)u(n)u(S)v,u(bdvv
dt

dm

0v0

1 =∫−∫∫+−
∞∞∞

  (9.23) 

  

Tal como hicimos para el caso de aglomeración podemos hacer un cambio de 

extremos de las integrales dobles de la ecuación (9.23). Teniendo en cuenta que 

0<v<∞ y v<u<∞; pueden ser reescritos como 0<u<∞ y 0<v<u. La ecuación (9.23) 

puede entonces expresarse como: 

0dv)v(n )v(Svdvv)v,u(bdu)u(n)u(S
dt

dm

0

u

00

1 =∫−∫∫+−
∞∞

  (9.24) 

Reemplazando la ecuación (9.20) en la ecuación (9.24): 

0dv)v(n )v(Svdu)u(n)u(Su
dt

dm

00

1 =∫−∫+−
∞∞

  (9.25) 

 Por lo tanto se verifica: 

 

 
 

0
dt

dm1 =    (9.26) 

 
 
Si calculamos el momento 0 (o NT) debemos hacer j=0 en la ecuación (9.22), 

por lo tanto: 

0dv)v(n )v(Sdu)u(n)u(S)v,u(bdv
dt

dm

0v0

0 =∫−∫∫+−
∞∞∞

  (9.27) 

 
El momento 0 no puede calcularse de modo genérico si no se definen las 

funcionalidades de  la constante de velocidad de ruptura y de la función de distribución 

de ruptura. Haremos dos suposiciones: 

 S(v)=constante=S0 

 Se producen rupturas binarias, i.e. una partícula se fractura para 

dar sólo dos fragmentos (ver Figura 9.6). 

 

!!!!! 
Molino discontinuo, 
perfectamente mezclado, 
ruptura pura 
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Figura 9.6. Ruptura binaria. 

 

 La función de distribución de ruptura es la función que tiene en cuenta si la 

ruptura es binaria o múltiple. Para el caso de ruptura binaria, deber verificarse que: 

 
u
2)v,u(b =      (9.28) 

La ecuación (9.28) indica que se producen 2 partículas de igual volumen por 

cada partícula u. Es importante resaltar que esta definición satisface además la 

ecuación (9.20) y se verifica ruptura binaria por evaluación de la ecuación (9.21), es 

decir: 

u
2

u
u
2dvv

u
2dv

u
2vdv)v,u(bvu

2u

0

u

0

u

0
==∫=∫=∫=    (9.29) 

2u
u
2dv)v,u(bN

u

0
u ==∫=      (9.30) 

Cambiando los extremos de integración de la ecuación (9.26): 

 

0dv)v(n Sdu)u(nS2
dt

dm

0dv)v(n Su
u
2du)u(nS

dt
dm

0dv)v(n Sdv
u
2du)u(nS

dt
dm

0
0

0
0

0

0
0

0
0

0

0
0

u

00
0

0

=∫−∫+−

=∫−⎟
⎠
⎞

⎜
⎝
⎛

∫+−

=∫−∫∫+−

∞∞

∞∞

∞∞

  (9.31) 

 De la ecuación 9.31 resulta: 
 

 

00
0 mS

dt
dm

=    (9.32) 

 

!!!!! 
Molino discontinuo, perfectamente 
mezclado, ruptura binaria pura, 
constante de velocidad de ruptura cte. 
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Las ecuaciones de momento pueden fácilmente extenderse a molinos con 

entradas y salidas, o aplicarse a otros sistemas de interés. 

 

Ejemplo 
 Un cultivo batch se inicia con un inóculo de 2 105 bacterias. El crecimiento 

exponencial cumple con el balance de población descripto por la ecuación 9.29. 

Estime el número de bacterias después de 30 minutos de operación, teniendo en 

cuenta que μmax= 0.1 min-1. 

 
Solución 

( )texpxx

t
x
xln

x
dt
dx

max0

max
0

max

μ=

μ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

μ=

 

 
 
 
9.6. Balance  de Población Microscópico 
9.6.1. En número 

 
El balance de población para un molino perfectamente mezclado que opera de 

manera discontinua es: 

0)v(n )v(Sdu)u(n)u(S)v,u(b
t
n

v
=−∫+

∂
∂

−
∞

  (9.33) 

 

El balance discretizado puede obtenerse integrando la ecuación (9.33) entre 

dos volúmenes de partículas consecutivos.  

 

0dv)v(n)v(Sdu)u(n)u(S)v,u(bdvdv
t
n 1i

i

1i

i

1i

i

v

vv

v

v

v

v
=∫−∫∫+∫

∂
∂

−
+++ ∞

 (9.34) 

 Aplicando los mismos conceptos vistos para la aglomeración (los 

alumnos interesados en la deducción pueden consultar el libro publicado por 

Ramkrishna; 2000) el balance de manera discreta resulta: 

 

0nSn)xj,x(bS
dt

dn *
ii

*
ji

#M

1ij
j

*
i =−∑+−

+=

   (9.35) 

x0= 2.00E+05 bacterias
t= 30 min
μmax= 1.00E-01 min-1
x= 4.02E+06 bacterias

!!!!! 
Molino discontinuo, perfectamente 

mezclado. 
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donde b# tiene unidades de (#i/#j). 

 

La ecuación (9.35) como en el caso de aglomeración ha sido obtenida 

asumiendo que las funciones continuas de la ecuación (9.33) pueden ser expresadas 

como variables discontinuas, de manera que al trabajar con la ecuación (9.35) con 

grillas fijas y deltas de tiempos grandes se puede incurrir en errores del cálculo de la 

masa total del sistema (la cual no debe variar). El uso de técnicas más sofisticadas 

que aseguren la preservación de los momentos fundamentales ha sido discutido, entre 

otros, por Kumar y Ramkrishna (1996). 

  

Si extendemos el balance a un molino donde existan corrientes de entrada y 

salida, la ecuación (9.35) se puede expresar como: 

 

    

 

                                            (9.36) 

 

 

                                                                                                          (9.37) 

 
 

Para molinos suelen encontrarse muchos trabajos donde se expresa el PBE en 

función de masa en lugar de número, por esta razón presentaremos el PBE por 

ruptura pura en términos de masa. 

!!!!! 
Molino continuo en estado no 
estacionario, perfectamente 
 mezclado. 

0n
V

Q
n

V
Q

nSn)xj,x(bS
dt

dn *
i

out*
in,i

in*
ii

*
ji

#M

1ij
j

*
i =−+−∑+−

+=

0n1n1nSn)xj,x(bS
dt

dn *
i

out

*
in,i

in

*
ii

*
ji

#M

1ij
j

*
i =

τ
−

τ
+−∑+−

+=
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9.6.2. En masa 

Dada la ecuación 9.37, 

0n1n1nSn)xj,x(bS
dt

dn *
i

out

*
in,i

in

*
ii

*
ji

#M

1ij
j

*
i =

τ
−

τ
+−∑+−

+=
    (9.37)                            

 
y la definición de masa de la clase i: 

ip
*
i

*
i xnm ρ=      (9.38)                 

donde  *
im  y xi son la masa y el volumen de la clase i, respectivamente.     

Reemplazando la expresión (9.38) en la (9.37), y teniendo en cuenta que en una 

grilla fija los tamaños xi  no varían con el tiempo:       

0
x

m1
x

m1
x

mS
x

m
)xj,x(bS

dt
dm

x
1

ip

*
i

outip

in
*
i

inip

*
i

i
jp

*
j

i
#M

1ij
j

*
i

ip
=

ρτ
−

ρτ
+

ρ
−

ρ
∑+

ρ
−

+=
  

 (9.39)                            

Multiplicando a ambos términos por ip xρ , se obtiene: 

       0m1m1mSm
x
x)xj,x(bS

dt
dm *

i
out

in
*
i

in

*
ii

*
j

j

i
i

#M

1ij
j

*
i =

τ
−

τ
+−∑+−

+=
   (9.40)                            

   La función de distribución de la ruptura (#i/#j) puede ser reemplazada por una 

función de ruptura en masa como sigue: 

 

)x,x(b
x
x)xj,x(b ji

*

j

i
i

# =      (9.41)    

Las unidades de la nueva función de ruptura son (gi i/gj), por lo tanto el PBE final 

en masa se reduce a:  

                   0m1m1mSm)xj,x(bS
dt

dm *
i

out
in

*
i

in

*
ii

*
ji

*M

1ij
j

*
i =

τ
−

τ
+−∑+−

+=
   (9.42)                             
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Ejemplo        
Considere un molino de tambor para moler cacao, el equipo permanece en estado 

estacionario y con .min10outin =τ=τ  Se alimentan 1 kg/min de partículas 

monodispersas del tamaño de la clase 6. 

Datos adicionales 

Clase 1 2 3 4 5 6 

Sj 0 0.3 0.35 0.5 0.6 0.7 

b(1,j) 0 1.0 0.4 0.25 0.2 0.12 

b(2,j) 0 0 0.6 0.25 0.2 0.12 

b(3,j) 0 0 0 0.5 0.2 0.14 

b(4,j) 0 0 0 0 0.4 0.3 

b(5,j) 0 0 0 0 0 0.32 

b(6,j) 0 0 0 0 0 0 

 

Solución: 
 Antes del planteo de las ecuaciones para la resolución del modelo se discutirá 

algunos aspectos vinculados al tiempo de residencia. El tiempo de residencia tal como  

lo hemos descripto está dado por la siguiente ecuación: 

                   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=τ

t
L
L;

Q
V

3

3
     (9.43)                            

 Si se multiplica por la densidad de la partícula en el numerador y denominador 

de la ecuación (9.39), resulta: 

                   
⎥
⎥
⎥

⎦
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⎢
⎢
⎢
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⎡
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ρ
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     (9.44)                            

 Considerando que la composición de una mezcla de partículas puede definirse 

por la masa fraccional yi de la corriente, se puede multiplicar y dividir el lado derecho 

de la ecuación (9.44) por yi: 

                   
i

*
iiT

m
m

yi
y

m
M

&&
==τ      (9.45)                            

 

Teniendo en cuenta que en este ejemplo entra una población monodispersa: 

                   *
in6inin mm =τ &       (9.46)                            

 

El PBE para este caso puede expresarse como: 
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                   0m1m1mSm)xj,x(bS *
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   (9.47)                           

Para las clases existentes podemos plantear diferentes balances: 

Clase 1                   

( ) ( ) ( ) ( ) ( )
0m1.0m1.0mS

m6,1bSm5,1bSm4,1bSm3,1bSm2,1bS
*
1in

*
1

*
11

*
6

*
6

*
5

*
5

*
4

*
4

*
3

*
3

*
2

*
2

=−+−

++++
                                          

Clase 2                   

 
( ) ( ) ( ) ( )

0m1.0m1.0mS

m6,2bSm5,2bSm4,2bSm3,2bS
*
2in

*
2

*
22

*
6

*
6

*
5

*
5

*
4

*
4

*
3

*
3

=−+−

+++
    

Clase 3                   

 ( ) ( ) ( ) 0m1.0m1.0mSm6,3bSm5,3bSm4,3bS *
3in

*
3

*
33

*
6

*
6

*
5

*
5

*
4

*
4 =−+−++     

Clase 4                   

 ( ) ( ) 0m1.0m1.0mSm6,4bSm5,4bS *
4in

*
4

*
44

*
6

*
6

*
5

*
5 =−+−+     

Clase 5                   

 ( ) 0m1.0m1.0mSm6,4bS *
5in

*
5

*
55

*
6

*
6 =−+−  

Clase 6                   

 0m1.0m1.0mS *
6in

*
6

*
66 =−+−  

 

Reemplazando los datos dados en el problema, resulta: 
Clase 1                   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 0m1.0m12.07.0m2.06.0m25.05.0m4.035.0m13.0 *
1

*
6

*
5

*
4

*
3

*
2 =−++++

                                                                            

Clase 2           

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 0m1.0m)3.0(m12.07.0m2.06.0m25.05.0m6.035.0 *
2

*
2

*
6

*
5

*
4

*
3 =−−+++       

Clase 3                   

 ( ) ( ) ( ) ( ) ( )( ) 0m1.0m)35.0(m14.07.0m2.06.0m5.05.0 *
3

*
3

*
6

*
5

*
4 =−−++       

Clase 4        

( ) ( ) ( )( ) 0m1.0m)5.0(m3.07.0m4.06.0 *
4

*
4

*
6

*
5 =−−+       

Clase 5        

( )( ) 0m1.0m)6.0(m32.07.0 *
5

*
5

*
6 =−−                 

Clase 6    

  ( ) ( )( ) 0m1.0101.0m7.0 *
6

*
6 =−+−                 
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 Solución clase 6 

  Kg25.1m*
6 =                 

Solución clase 5 

  Kg4.0m*
5 =                 

Solución clase 4 

Kg5975.0m*
4 =        

Solución clase 3 

Kg710833333.0m*
3 =        

Solución clase 2 

Kg94240625.0m*
2 =        

Solución clase 1 

Kg09926042.6m*
1 =        

Se verifica que  Kg10m
6

1

*
i =∑ , por lo tanto se preserva la masa total de la 

población en el molino, lo cual es razonable si está operando en estado estacionario. 
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